
Week 7 Part 2
Kyle Dewey

Thursday, August 9, 12

Overview

•NULL

• Recursion

• Exam #2 Review

Thursday, August 9, 12

NULL

Thursday, August 9, 12

Recall...

• When a file can’t be opened with fopen, it
returns NULL

• NULL is a special value in C

Thursday, August 9, 12

NULL

• Is zero at the binary representation

• Is a pointer

• Can be assigned to any pointer type

char* string = NULL;
int* arr = NULL;

Thursday, August 9, 12

NULL

• Can be used as a sentinel value

• Often used to show that an operation
couldn’t be performed

• Return NULL if we can’t open a file, etc.

Thursday, August 9, 12

Example
#define LENGTH 4
int array[] = { 1, 2, 3, 4 };
int* subarray(int start) {
 if (start >= 0 &&
 start < LENGTH) {
 return &(array[start]);
 } else {
 return NULL;
 }
}

Thursday, August 9, 12

Caveats

• If we try to dereference a NULL pointer,
the program will crash, usually with a
segmentation fault

• This means it tried to access memory
that it didn’t have permission to access

char* string = NULL;
string[2] = ‘f’; // crash
printf(“%s\n”, string); // crash

Thursday, August 9, 12

Caveat

• It can also make code trickier

• Is NULL a possible value?

• In real code, there are places where NULL
is impossible but people check anyway (and
vice-versa!)

Thursday, August 9, 12

Recursion

Thursday, August 9, 12

Binary Tree
• Mathematical concept

• A special kind of graph

Thursday, August 9, 12

Counting

• Basic operation: how many nodes are in the
tree?

Thursday, August 9, 12

Depth

• Basic operation: how deep is the tree?

Thursday, August 9, 12

Representation

• Nodes: the circles

• Edges: things that connect the circles

• Nodes in a binary tree have at most two
edges connecting to other nodes

• No cycles

Thursday, August 9, 12

Representation

• Each node has two edges

• An edge is either connected or it’s not

Thursday, August 9, 12

Code Representation

• Hint: nodes should be represented as
structs

• What would this definition look like?

Thursday, August 9, 12

Code Representation

• Hint: nodes should be represented as
structs

• What would this definition look like?

struct Node {
 struct Node* left;
 struct Node* right;
};

Thursday, August 9, 12

Code Representation

• Represent nodes as struct Nodes

• If there is not a connection, use NULL

struct Node {
 struct Node* left;
 struct Node* right;
};

Thursday, August 9, 12

Recursion

• A struct Node holds pointers to other
struct Nodes

• A struct Node is defined in terms of
itself!

Thursday, August 9, 12

Recursion

• In general, this means there is something
defined in terms of itself

• Can be data structures (like structs)

• Can be functions (a little later)

• Broken up into recursive cases and base
cases

Thursday, August 9, 12

Base Case

• Something not defined in terms of itself

• Act to end the recursion

• Can be multiple base cases

• For a struct Node, this means NULL

Thursday, August 9, 12

Recursive Case

• Case that is defined in terms of itself

• This is a struct Node that connects to
another struct Node

Thursday, August 9, 12

Tree as a Whole

• How to represent this?

• Interesting note: there are subtrees

Thursday, August 9, 12

Tree as a Whole

• Can simply use a struct Node without
anything else

• This is a very flexible representation

Thursday, August 9, 12

Operations

• So keeping this representation in mind...

Thursday, August 9, 12

Counting

• Basic operation: how many nodes are in the
tree?

Thursday, August 9, 12

Base Case

• A tree that is not there (i.e. NULL) has no
nodes (i.e. 0 nodes)

Thursday, August 9, 12

Base Case

• A tree that is not there (i.e. NULL) has no
nodes (i.e. 0 nodes)

if (node == NULL) {
 return 0;
}

Thursday, August 9, 12

Recursive Case
• Given:

• The number of nodes on the left

• The number of nodes on the right

• How many nodes are here?

... ...
(3 nodes) (2 nodes)

Thursday, August 9, 12

Recursive Case

... ...
(3 nodes) (2 nodes)

nodesLeft + nodesRight + 1;
(3) (2) (current node)

Thursday, August 9, 12

Full Code

Thursday, August 9, 12

Depth

• Basic operation: how deep is the tree?

Thursday, August 9, 12

Base Case

• A tree that is not there (i.e. NULL) has no
depth (i.e. 0)

Thursday, August 9, 12

Base Case

• A tree that is not there (i.e. NULL) has no
depth (i.e. 0)

if (node == NULL) {
 return 0;
}

Thursday, August 9, 12

Recursive Case
• Given:

• The depth of the tree on the left

• The depth of the tree on the right

• How deep is the tree?

... ...
(depth 3) (depth 2)

Thursday, August 9, 12

Recursive Case

... ...
(depth 3) (depth 2)

(3) (2) (current node)
max(depthLeft, depthRight) + 1

Thursday, August 9, 12

Full Code

Thursday, August 9, 12

Exam #2

Thursday, August 9, 12

Exam #2

• Exam is unintentionally cumulative

• Still need to know how to use if,
assignment, etc.

• Will not focus on that material

Thursday, August 9, 12

Focus

• Functions

• Prototype

• Definition

• Calls

• For all of these, what it is and how to do it

Thursday, August 9, 12

Focus

• Loops (while, do/while, for)

• How to read them

• How to write them

• Be able to say what code does (i.e. the
variable x is 5 after this code runs)

Thursday, August 9, 12

Focus

• Arrays

• Initialize them

• Index into them to get / set values

• “Given an array of length 10, find the first
element that...”

Thursday, August 9, 12

Focus

• File I/O

• Opening / closing

• Reading / writing

Thursday, August 9, 12

Focus

• Types

• Be able to identify the type of an
expression

• Just like last time, except now pointers
are fully in the mix

Thursday, August 9, 12

Focus

• Structs

• You will not have to trace crazy pointer
logic

• You will need to know how to access
them and set fields in them

• Know what -> does

Thursday, August 9, 12

Don’t Worry About

• Recursion

•typedef

Thursday, August 9, 12

